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1. Consider the following gameG, where Player 1 chooses the row and Player 2 simultaneously
chooses the column.

Player 1

Player 2
D E F

A 7, 7 0, 1 0, 3
B 2, 2 3, 3 0, 0
C 8,−1 2, 0 1, 1

(a) Show which strategies in G are eliminated by following the procedure of ‘Iterated
Elimination of Strictly Dominated Strategies’.

(b) Find all Nash equilibria (NE), pure and mixed, in G. Show which NE gives the
highest payoff to both players, and denote this equilibrium strategy profile by e(1).

(c) Now consider the game G(2), which consists of the stage game G repeated two times.
Assume that players discount period-2 payoffs with factor δ ≥ 1/2. Define the average
payoff of player i ∈ {1, 2} in G(2) as (πi,1 + πi,2)/(1 + δ), where πi,t refers to player
i’s payoff in period t.

Find one pure strategy Subgame Perfect Nash Equilibrium (SPNE) where both players
earn an average payoff that is strictly higher than their payoff in e(1). (NOTE: make
sure to consider deviations in any subgame). Denote the equilibrium strategy profile
you found by e(2).

(d) Now consider the game G(∞), which consists of the stage game G repeated infinitely
many times. Continue to assume that players discount future payoffs with factor
δ ≥ 1/2. Define the average payoff of player i ∈ {1, 2} as (

∑∞
t=1 δ

t−1πi,t)(1 − δ),
where πi,t refers to player i’s payoff in period t.

Find one pure strategy SPNE where both players earn an average payoff that is strictly
higher than they earned in e(2).

2. Consider the following signaling game. At each terminal node, the first number refers to
the payoff of the Sender, and the second number refers to the payoff of the Receiver.



                      xw , 1                     0 , 1 

 Duel             p        Quiche   t = Wimpy       Beer          q        Duel 

 No             No 

               2 + xw , 0                                         0.1                   2 , 0   

                   0 , -1                Nature                  xt , - 1 

 Duel                0.9             Duel 

 No               No 

                   2 , 0 Quiche    t =  Tough       Beer                2 + xt , 0 

In words, the Sender must decide what to have for breakfast: quiche or beer. The Sender
is either wimpy or tough. All else being equal, a wimpy type prefers quiche over beer,
where xw > 0 captures the intensity of this preference. Similarly, the tough type prefers
beer over quiche, where xt > 0 captures the intensity of this preference. The values of xt

and xw are common knowledge. The Receiver observes what the Sender has for breakfast,
and must then decide whether to challenge him to a duel. The Receiver only benefits from
challenging (i.e. he wins the duel) if the Sender is wimpy. The Sender never benefits from
being challenged, regardless of his type.

(a) Suppose for this subquestion that xw = 1 and xt = 1. Does a separating PBE exist
in this game (yes or no)?

(b) Explain for what values of xw > 0 and xt > 0 does a pooling PBE exist where both
Sender types have beer, and find one such equilibrium. Explain for what values of
xw > 0 and xt > 0 does a pooling PBE exist where both Sender types have quiche,
and find one such equilibrium. Intuitively, why can the intensity of the Sender’s
preference over breakfast be important in a pooling equilibrium?

(c) Now suppose again that xw = 1 and xt = 1. Using your answers in part (a) and
(b), and referring to Signaling Requirements 5 and 6, what equilibrium do you think
is the most likely to be played? What will the Sender have for breakfast? Will the
Receiver to end up challenging the Sender to a duel?

3. Two consumers are considering whether to buy a product that exhibits network effects.
The payoff from buying depends on the choice of the other consumer. That is, for each
consumer i ∈ {1, 2}, the payoff Ui from buying depends on three terms: the consumer’s
type, θi, which represents his intrinsic valuation of the product; a potential network payoff
λ > 0, which consumer i only obtains if consumer j 6= i also buys; and the price p.
Specifically, buying yields Ui = θi + λ − p if consumer j also buys, or Ui = θi − p if
consumer j does not. Not buying the product gives a payoff of zero. Each consumer’s type
is drawn from a uniform distribution on [0, 1] and is private information. For all parts of
this question, you can assume the following parameter values: λ = 1/4 and p = 1/2.

(a) Suppose consumers must simultaneously decide whether or not to buy, so the strategic
situation they face can be seen as a static game of incomplete information. The
Bayesian-Nash equilibrium of this game will be characterized by a threshold value of
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θ ∈ (0, 1), which you can label as θ∗. What is the equilibrium probability that each
consumer buys the product, in the Bayesian-Nash equilibrium of this game?

(b) Now consider the following modified situation. Consumer 1 is given the product for
free. Consumer 2 knows this, and understands that his own payoff from buying is
U2 = θ2 +λ−p for sure. Think of the strategic situation facing consumer 2 as a static
game (with only one player). What is the equilibrium probability that consumer 2
buys the product, in the (Bayesian-Nash) equilibrium of this game? Briefly comment
on any difference with your answer in part (a).

(c) One way to interpret part (a) is that the firm selling the product follows a ‘standard’
marketing approach, where it releases the product simultaneously to both consumers.
One way to interpret part (b) is that the firm follows a ‘seeding’ marketing approach,
giving away the product to one consumer for free, in the hopes of convincing the other
consumer to buy. Given these interpretations, and using your answers in parts (a)
and (b) to calculate firm revenues, argue whether a ‘standard’ or a ‘seeding’ approach
is more profitable in this situation, and briefly explain why this is the case.
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